for Television -
Data Structure for DV-Based Audio, Data and Compressed Video 25 and $50 \mathrm{Mb} / \mathrm{s}$

Table of contents

1 Scope
2 Normative references
3 Acronyms
4 Interface
5 Video compression
Annex A Differences between IEC 61834 and SMPTE 314M
Annex B Bibliography

1 Scope

This standard defines the DV-based data structure for the interface of digital audio, subcode data, and compressed video with the following parameters:
$525 / 60$ system $-4: 1: 1$ image sampling structure, $25 \mathrm{Mb} / \mathrm{s}$ data rate
$525 / 60$ system $-4: 2: 2$ image sampling structure, $50 \mathrm{Mb} / \mathrm{s}$ data rate
$625 / 50$ system $-4: 1: 1$ image sampling structure, $25 \mathrm{Mb} / \mathrm{s}$ data rate
$625 / 50$ system $-4: 2: 2$ image sampling structure, $50 \mathrm{Mb} / \mathrm{s}$ data rate

The standard does not define the DV-compliant data structure for the interface of digital audio, subcode data, and compressed video with the following parameters:

625/50 system - 4:2:0 image sampling structure, $25 \mathrm{Mb} / \mathrm{s}$ data rate
The compression algorithm and the DIF structure conform to the DV data structure as defined in IEC 61834. The differences between the DV-based data structure defined in this standard and IEC 61834 are shown in annex A.

2 Normative references

The following standards, through reference in this text, constitute provisions of this standard. All standards are subject to revision, and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent edition of the standards indicated below.

IEC 61834-1 (1997), Recording — Helical-Scan Digital Video Cassette Recording System Using 6,35 mm Magnetic Tape for Consumer Use (525-60, 625-50, 1125-60, and 1250-50 Systems) - Part 1: General Specifications

IEC 61834-2 (1997), Recording — Helical-Scan Digital Video Cassette Recording System Using 6,35 mm Magnetic Tape for Consumer Use (525-60, 625-50, 1125-60, and 1250-50 Systems) - Part 2: SD Format for 525-60 and 625-50 Systems

SMPTE 12M-1995, Television, Audio and Film - Time and Control Code
ITU-R BT.470-6 (11/98), Conventional Television Systems
ITU-R BT.601-5 (10/95), Studio Encoding Parameters of Digital Television for Standard 4:3 and WideScreen 16:9 Aspect Ratios

3 Acronyms

AAUX - Audio auxiliary data
AP1 - Audio application ID
AP2 - Video application ID
AP3 - Subcode application ID
APT - Track application ID
Arb - Arbitrary
AS - AAUX source pack
ASC - AAUX source control pack
B/W - Black-and-white flag
CGMS - Copy generation management system
CM - Compressed macro block
DBN - DIF block number
DCT - Discrete cosine transform
DIF - Digital interface
DRF - Direction flag
Dseq - DIF sequence number
DSF - DIF sequence flag
DV - Identification of a compression family
EFC - Emphasis audio channel flag
EOB - End of block
FR - Identification for the first or second half of each channel
FSC - Identification of a DIF block in each channel
LF - Locked mode flag
QNO - Quantization number
QU - Quantization
Res - Reserved for future use
SCT - Section type
SMP - Sampling frequency
SSYB - Subcode sync block
STA - Status of the compressed macro block
STYPE - Signal type (see note)
Syb - Subcode sync block number
TF - Transmitting flag
VAUX - Video auxiliary data
VLC - Variable length coding
VS - VAUX source pack
VSC - VAUX source control pack
NOTE - STYPE as used in this standard is different from that in ANSI/IEEE 1394.

4 Interface

4.1 Introduction

As shown in figure 1, processed audio, video, and subcode data are output for different applications through a digital interface port.

4.2 Data structure

The data structure of the compressed stream at the digital interface is shown in figures 2 and 3 . Figure 2 shows the data structure for a $50 \mathrm{Mb} / \mathrm{s}$ structure, and figure 3 shows the data structure for a $25 \mathrm{Mb} / \mathrm{s}$ structure.

In the $50 \mathrm{Mb} / \mathrm{s}$ structure, the data of one video frame are divided into two channels. Each channel is divided into 10 DIF sequences for the 525/60 system and 12 DIF sequences for the 625/50 system.

In the $25 \mathrm{Mb} / \mathrm{s}$ structure, the data of one video frame are divided into 10 DIF sequences for the 525/60 system and 12 DIF sequences for the 625/50 system.

Each DIF sequence consists of a header section, subcode section, VAUX section, audio section, and video section with the following DIF blocks respectively:

Header section: 1 DIF block
Subcode section: 2 DIF blocks
VAUX section: 3 DIF blocks
Audio section: 9 DIF blocks
Video section: 135 DIF blocks
As shown in figures 2 and 3 , each DIF block consists of a 3-byte ID and 77 bytes of data. DIF data bytes are numbered 0 to 79 . Figure 4 shows the data structure of a DIF sequence for a 50 or $25 \mathrm{Mb} / \mathrm{s}$ structure.

Figure 1 - Block diagram on digital interface

Figure 2 - Data structure of one video frame for $50 \mathrm{Mb} / \mathrm{s}$ structure

Figure 3 - Data structure of one video frame for $25 \mathrm{Mb} / \mathrm{s}$ structure

DIF blocks

$H 0, \mathrm{i}$	$\mathrm{SC} 0, \mathrm{i}$	$\mathrm{SC} 1, \mathrm{i}$	VA0,i	VA1, i	VA2,i

A0,i	V0,i	V1,i	V2,i	V3,i	V4,i	V5,i	V6,i	V7,i	V8,i	V9,i	V10,i	V11,i	V12,i	V13,i	V14,i
A1,i	V15,i	V16,i	V17,i	V18,i	V19,i	V20,i	V21,i	V22,i	V23,i	V24,i	V25,i	V26,i	V27,i	V28,i	V29,i
A2,i	V30,i	V31,i	V32,i	V33,i	V34,i	V35,i	V36,i	V37,i	V38,i	V39,i	V40,i	V41,i	V42,i	V43,i	V44,i
A3,i	V45,i	V46,i	V47,i	V48,i	V49,i	V50,i	V51,i	V52,i	V53,i	V54,i	V55,i	V56,i	V57,i	V58,i	V59,i

$A 4, \mathrm{i}$	V60,i	V61,i	V62,i	V63,i	V64,i	V65,i	V66,i	V67,i	V68,i	V69,i	V70,i	V71,i	V72,i	V73,i	V74,i

A5,i	V75,i	V76,i	V77,i	V78,i	V79,i	V80,i	V81,i	V82,i	V83,i	V84,i	V85,i	V86,i	V87,i	V88,i	V89,i

A6,i	V90,i	V91,i	V92,i	V93,i	V94,i	v95,i	V96,i	V97,i	V98,i	v99,	V100,i	V101, i	V102,i	V103,	V104,i
A7,i	V105, i	V106,i	V107,i	V108,i	V109,i	V110,i	V111,i	V112,i	V113,i	V114,i	V115,i	V116,i	V117,i	V118,i	V119,i
A8,i	V120,i	V121,i	V122,i	V123,i	V124,i	V125,i	V126,i	V127,i	V128,i	V129,	V130,i	V131,i	V132,i	V133,i	134,i

where
i : FSC $\begin{array}{ll}i=0 & \text { for } 25 \mathrm{Mb} / \mathrm{s} \text { structure } \\ i=0,1 \text { for } 50 \mathrm{Mb} / \text { s structure }\end{array}$
H0,i : DIF block in header section
SC0,i to SC1,i : DIF blocks in subcode section
VA0,i to VA2,I : DIF blocks in VAUX section
A0,i to A8,I : DIF blocks in audio section
V0,i to V134,I : DIF blocks in video section
Figure 4 - Data structure of a DIF sequence

4.3 Header section

4.3.1 ID

The ID part of each DIF block in the header section, shown in figures 2 and 3, consists of 3 bytes (ID0, ID1, ID2). Table 1 shows the ID content of a DIF block.

Table 1 - ID data of a DIF block

MSB	Byte position number		
	Byte 0 (IDO)	Byte 1 (ID1)	Byte 2 (ID2)
	SCT_{2}	Dseq_{3}	DBN_{7}
	SCT_{1}	Dseq_{2}	DBN_{6}
	SCT_{0}	Dseq ${ }_{1}$	DBN_{5}
	Res	Dseqo	DBN_{4}
	Arb	FSC	DBN_{3}
	Arb	Res	DBN_{2}
	Arb	Res	DBN_{1}
LSB	Arb	Res	DBN 0

ID contains the following:
SCT: Section type (see table 2)
Dseq: DIF sequence number (see tables 3 and 4)
FSC: Identification of a DIF block in each channel $50 \mathrm{Mb} / \mathrm{s}$ structure

FSC $=0$: first channel
FSC = 1: second channel
$25 \mathrm{Mb} / \mathrm{s}$ structure
FSC $=0$
DBN: DIF block number (see table 5)
Arb: Arbitrary bit
Res: Reserved bit for future use
Default value shall be set to 1

Table 2 - Section type

SCT_{2}	SCT_{1}	SCT_{0}	Section type
0	0	0	Header
0	0	1	Subcode
0	1	0	VAUX
0	1	1	Audio
1	0	0	Audio
1	0	1	Reserved
1	1	0	
1	1	1	

Table 3 - DIF sequence number for 525/60 system

Dseq $_{3}$	Dseq $_{2}$	Dseq $_{1}$	Dseq $_{0}$	Meaning
0	0	0	0	DIF sequence number 0
0	0	0	1	DIF sequence number 1
0	0	1	0	DIF sequence number 2
0	0	1	1	DIF sequence number 3
0	1	0	0	DIF sequence number 4
0	1	0	1	DIF sequence number 5
0	1	1	0	DIF sequence number 6
0	1	1	1	DIF sequence number 7
1	0	0	0	DIF sequence number 8
1	0	0	1	DIF sequence number 9
1	0	1	0	Not used
1	0	1	1	Not used
1	1	0	0	Not used
1	1	0	1	Not used
1	1	1	0	Not used
1	1	1	1	Not used

Table 4 - DIF sequence number for 625/50 system

Dseq $_{3}$	Dseq $_{2}$	Dseq $_{1}$	Dseq $_{0}$	Meaning
0	0	0	0	DIF sequence number 0
0	0	0	1	DIF sequence number 1
0	0	1	0	DIF sequence number 2
0	0	1	1	DIF sequence number 3
0	1	0	0	DIF sequence number 4
0	1	0	1	DIF sequence number 5
0	1	1	0	DIF sequence number 6
0	1	1	1	DIF sequence number 7
1	0	0	0	DIF sequence number 8
1	0	0	1	DIF sequence number 9
1	0	1	0	DIF sequence number 10
1	0	1	1	DIF sequence number 11
1	1	0	0	Not used
1	1	0	1	Not used
1	1	1	0	Not used
1	1	1	1	Not used

Table 5 - DIF block number

Dseq $_{7}$	Dseq $_{6}$	Dseq $_{5}$	Dseq $_{4}$	Dseq $_{3}$	Dseq $_{2}$	Dseq $_{1}$	Dseq $_{0}$	Meaning
0	0	0	0	0	0	0	0	DIF sequence number 0
0	0	0	0	0	0	0	1	DIF sequence number 1
0	0	0	0	0	0	1	0	DIF sequence number 2
0	0	0	0	0	0	1	1	DIF sequence number 3
\vdots								
\vdots								
\vdots	$:$	\vdots	$:$	\vdots	\vdots	\vdots	\vdots	\vdots
1	0	0	0	0	1	1	0	DIF block number 134
1	0	0	0	0	1	1	1	Not used
$:$	$:$	$:$	$:$	$:$	\vdots	$:$	\vdots	$:$
1	1	1	1	1	1	1	1	Not used

4.3.2 Data

The data part (payload) of each DIF block in the header section is shown in table 6. Bytes 3 to 7 are active and bytes 8 to 79 are reserved.

Table 6 - Data (payload) in the header DIF block

MSB	Byte position number of header DIF block							
	3	4	5	6	7	8	-	79
	DSF	Res	TF1	TF2	TF3	Res	Res	Res
	0	Res						
	Res							
	Res							
	Res							
	Res	APT_{2}	$\mathrm{AP1}_{2}$	$\mathrm{AP2}_{2}$	AP_{2}	Res	Res	Res
	Res	APT_{1}	$\mathrm{AP} 1_{1}$	AP2 ${ }_{1}$	AP^{1}	Res	Res	Res
LSB	Res	APT_{0}	AP10	AP 20	$\mathrm{AP}^{0} 0$	Res	Res	Res

DSF: DIF sequence flag
DSF $=0: 10$ DIF sequences included in a channel ($525 / 60$ system)
DSF =1:12 DIF sequences included in a channel ($625 / 50$ system)
APTn, AP1n, AP2n, AP3n: These data shall be identical as track application IDs (APTn = 001, AP1n = $001, A P 2 n=001, A P 3 n=001$), if the source signal comes from a digital VCR. If the signal source is unknown, all bits for these data shall be set to 1 .

TF: Transmitting flag:
TF1: Transmitting flag of audio DIF blocks
TF2: Transmitting flag of VAUX and video DIF blocks
TF3: Transmitting flag of subcode DIF blocks
TFn $=0$: Data shall be valid.
TFn = 1: Data shall be invalid.
Res: Reserved bit for future use
Default value shall be set to 1 .

4.4 Subcode section

4.4.1 ID

The ID part of each DIF block in the subcode section is described in 4.3.1. The section type shall be 001.

4.4.2 Data

The data part (payload) of each DIF block in the subcode section is shown in figure 5. The subcode data consists of 6 SSYBs, each 8 bytes long, and a reserved area of 29 bytes in each relevant DIF block. SSYBs in a DIF sequence are numbered 0 to 11. Each SSYB is composed of SSYB ID equal to 2 bytes, FF_{h}, and an SSYB data payload of 5 bytes.

Byte position number

Figure 5 - Data in the subcode section

4.4.2.1 SSYB ID

Table 7 shows SSYB ID (ID0, ID1). These data contain FR ID, application ID (AP3 ${ }_{2}, \mathrm{AP}_{1}, \mathrm{AP} 3_{0}$), and SSYB number ($\mathrm{Syb}_{3}, \mathrm{Syb}_{2}$ Syb $_{1}, \mathrm{Syb}_{0}$).

FR ID is an identification for the first or second half of each channel:
FR = 1: the first half of each channel
$F R=0$: the second half of each channel
The first half of each channel
DIF sequence number $0,1,2,3,4$ for the $525 / 60$ system
DIF sequence number $0,1,2,3,4,5$ for the $625 / 50$ system
The second half of each channel
DIF sequence number $5,6,7,8,9$ for the $525 / 60$ system
DIF sequence number $6,7,8,9.10,11$ for the 625/50 system
If information is not available, all bits shall be set to 1 .

Table 7 - SSYB ID

Bit position	SSYB number		SSYB number 1 to 5 and 7 to 10		SSYB number 11	
	ID0	ID1	ID0	ID1	ID0	ID1
b7 (MSB)	FR	Arb	FR	Arb	FR	Arb
b6	AP_{3}	Arb	Res	Arb	APT_{2}	Arb
b5	$\mathrm{AP3}_{1}$	Arb	Res	Arb	APT_{1}	Arb
b4	AP30	Arb	Res	Arb	APT_{0}	Arb
b3	Arb	Syb_{3}	Arb	Syb_{3}	Arb	Syb_{3}
b2	Arb	Syb_{2}	Arb	Syb_{2}	Arb	Syb_{2}
b1	Arb	Syb ${ }_{1}$	Arb	Syb ${ }_{1}$	Arb	Syb ${ }_{1}$
b0 (LSB)	Arb	Sybo	Arb	Sybo	Arb	Sybo
NOTE - Arb = arbitrary bit.						

4.4.2.2 SSYB data

Each SSYB data payload consists of a pack of 5 bytes as shown in figure 6. Table 8 shows pack header table (PCO byte organization). Table 9 shows the pack arrangement in SSYB data for each channel.

Figure 6 - Pack in SSYB

Table 8 - Pack header table

UPPER LOWER	0000	0001	0010	0011	0100	0101	0110	0111	-	1111
0000						SOURCE	SOURCE			
0001						SOURCE CONTROL	SOURCE CONTROL			
0010										
0011		TIME CODE								
0100		BINARY GROUP								
0101										
1										
1111										NO INFO

Table 9 - Mapping of packet in SSYB data

SSYB number	First half of each channel	Second half of each channel
0	Reserved	Reserved
1	Reserved	Reserved
2	Reserved	Reserved
3	TC	TC
4	BG	Reserved
5	TC	Reserved
6	Reserved	Reserved
7	Reserved	Reserved
8	Reserved	Reserved
9	TC	TC
10	BG	Reserved
11	TC	Reserved
NOTES 1 TC = time code p 2 BG = binary grou 3 Reserved = defau 4 TC and BG data an LCT type.	shall be set to in a single vid	me code data a

4.4.2.2.1 Time code pack (TC)

Table 10 shows a mapping of the time code pack. Time code data mapped to the time code packs remain the same within each video frame.

Table 10 - Mapping of time code pack

525/60 system		
MSB		
PC0 0 0 0 1 0 0 1 1 PC1 CF DF TENS of FRAMES UNITS of FRAMES PC2 PC TENS of SECONDS UNITS of SECONDS PC3 BGF0 TENS of MINUTES UNITS of MINUTES PC4 BGF2 BGF1 TENS of HOURS UNITS of HOURS		

625/50 system

MSB				LSB			
PC0	0	0	0	0	0	1	1
PC1	CF	Arb	TENS of FRAMES	UNITS of FRAMES			
PC2	BGF0	TENS of SECONDS		UNITS of SECONDS			
PC3	BGF2	TENS ofMINUTES		UNITS of MINUTES			
PC4	PC	BGF1	TENS of HOURS	UNITS of HOURS			

NOTE - Detailed information is given in SMPTE 12M.

CF: Color fame
0 = unsynchronized mode
1 = synchronized mode
DF: Drop frame flag
$0=$ Nondrop frame time code
1 = Drop frame time code
PC: Biphase mark polarity correction

$$
\begin{aligned}
& 0=\text { even } \\
& 1=\text { odd }
\end{aligned}
$$

BGF: Binary group flag
Arb: Arbitrary bit

4.4.2.2.2 Binary group pack (BG)

Table 11 shows the mapping of the binary group pack. Binary group data mapped to the binary group packs remain the same within each video frame.

Table 11 - Mapping of binary group pack

MSB							LSB	
PC0	0	0	0	1	0	1	0	0
PC1	BINARY GROUP 2				BINARY GROUP 1			
PC2	BINARY GROUP 4				BINARY GROUP 3			
PC3	BINARY GROUP 6				BINARY GROUP 5			
PC4	BINARY GROUP 8				BINARY GROUP 7			

4.5 VAUX section

4.5.1 1D

The ID part of each DIF block in the VAUX section is described in 4.3.1. The section type shall be 010.

4.5.2 Data

The data part (payload) of each DIF block in the VAUX section is shown in figure 7. This figure shows the VAUX pack arrangement for each DIF sequence.

There are 15 packs, each 5 bytes long, and two reserved bytes in each VAUX DIF block payload. A default value for the reserved byte is set to FF_{h}.

Therefore, there are 45 packs in a DIF sequence. VAUX packs of the DIF blocks are sequentially numbered 0 to 44 . This number is called a video pack number.

Table 12 shows the mapping of the VAUX packs of the VAUX DIF blocks. A VAUX source pack (VS) and a VAUX source control pack (VSC) must be present in each of the video compressed frames. The remaining VAUX packs of the DIF blocks in a DIF sequence are reserved and the value of all reserved words is set to FF_{h}.

If VAUX data are not transmitted, a NO INFO pack, which is filled up by FF_{h}, shall be transmitted.

Byte position number

Figure 7 - Data in the VAUX section

Table 12 - Mapping of VAUX pack in a DIF sequence

Pack number		Pack data
Even DIF sequence	Odd DIF sequence	
39	0	VSC
40	1	VSC

where
Even DIF sequence:
DIF sequence number 0, 2, 4, 6, 8 for 525/60 system DIF sequence number $0,2,4,6,8,10$ for $625 / 50$ system

Odd DIF sequence:
DIF sequence number 1, 3, 5, 7, 9 for 525/60 system
DIF sequence number 1, 3, 5, 7, 9,11 for $625 / 50$ system

4.5.2.1 VAUX source pack (VS)

Table 13 shows the mapping of a VAUX source pack.
Table 13 - Mapping of VAUX source pack

B/W: Black-and-white flag
$0=$ Black and white
1 = Color

EN: Color frames enable flag
$0=$ CLF is valid
$1=$ CLF is invalid
CLF: Color frame identification code (see ITU-R BT.470-6)
For 525/60 system
00b = Color frame A
01b = Color frame B
Others $=$ Reserved
For 625/50 system
$00 b=1^{\text {st }}, 2^{\text {nd }}$ field
$01 \mathrm{~b}=3^{\text {rd }}, 4^{\text {th }}$ field
$10 \mathrm{~b}=5^{\text {th }}, 6^{\text {th }}$ field
$11 \mathrm{~b}=7^{\text {th }}, 8^{\text {th }}$ field
50/60:
$0=60$-field system
$1=50$-field system

STYPE: STYPE defines a signal type of video signal

$$
\begin{aligned}
& 00000 b=4: 1: 1 \text { compression } \\
& 00001 \mathrm{~b}=\text { Reserved } \\
&|\quad| \\
& 00011 \mathrm{~b}=\text { Reserved } \\
& 00100 \mathrm{~b}=4: 2: 2 \text { compression } \\
& 00101 \mathrm{~b}=\text { Reserved } \\
& \mid \\
& 11111 \mathrm{~b}=\text { Reserved }
\end{aligned}
$$

VISC:

$$
\begin{aligned}
& 10001000 \mathrm{~b}=-180 \\
& \mid \\
& 00000000 \mathrm{~b}= \\
& \mid \\
& \mid \\
& 0111000 \mathrm{~b}= \\
& \hline 0 \\
& 01111111 \mathrm{~b}=\text { = No information } \\
& \text { Other = Reserved }
\end{aligned}
$$

Res: Reserved bit for future use
Default value shall be set to 1

4.5.2.2 VAUX source control pack (VSC)

Table 14 shows the mapping of a VAUX source control pack.
Table 14 - Mapping of VAUX source control pack

| MSB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PC0 0 1 1 0 0 0 0 1
 PC1 CGMS Res Res Res Res Res Res
 PC2 Res Res 0 0 Res 0 0
 PC3 FF FS FC IL Res Res 0 Res
 PC4 Res Res Res Res Res Res Res Res |

CGMS: Copy generation management system

CGMS		Copy possible generation
0	0	Copy free
0	1	
1	0	Reserved
1	1	

DISP: Display select mode

DISP		Aspect ratio and format	Position	
0	0	0	$4: 3$ full format	Not applicable
0	0	1		Reserved
0	1	0		Not applicable
0	1	1		
	1			
1	1	1		Reserved

FF: Frame/field flag
FF indicates whether two consecutive fields are delivered, or one field is repeated twice during one frame period.
$0=$ Only one of two fields is delivered twice
$1=$ Both fields are delivered in order.
FS: First/second field flag
FS indicates a field which is delivered during the field one period.
$0=$ Field 2 is delivered
1 = Field 1 is delivered.

FF	FS	Output field
1	1	Field 1 and field 2 are output in this order (1, 2 sequence)
1	0	Field 2 and field 1 are output in this order (2, 1 sequence)
0	1	Field 1 is output twice
0	1	Field 2 is output twice

FC: Frame change flag
FC indicates whether the picture of the current frame is repeated based on the immediate previous frame.
$0=$ Same picture as the previous frame
1 = Different picture from the previous frame
IL: Interlace flag
$0=$ Noninterlaced
1 = Interlaced
Res: Reserved bit for future use
Default value shall be set to 1 .
Page 16 of 52 pages

4.6 Audio section

4.6.1 ID

The ID part of each DIF block in the audio section is described in 4.3.1. The section type shall be 011.

4.6.2 Data

The data part (payload) of each DIF block in the audio section is described in figure 8. The data of a DIF block in the audio DIF block are composed of 5 bytes of audio auxiliary data (AAUX) and 72 bytes of audio data which are encoded and shuffled by the process shown in clauses 4.6.2.1 and 4.6.2.2.

Byte position number

Figure 8 - Data in the audio section

4.6.2.1 Audio encoding

4.6.2.1.1 Source coding

Each audio input signal is sampled at 48 kHz , with 16 -bit quantization. The system provides two channels of audio for $25 \mathrm{Mb} / \mathrm{s}$ structure or four channels of audio for $50 \mathrm{Mb} / \mathrm{s}$ structure. Audio data for each audio channel are located in an audio block respectively.

An audio block consists of 45 DIF blocks (9 DIF blocks $\times 5$ DIF sequences) for the $525 / 60$ system; and 54 DIF blocks (9 DIF blocks $\times 6$ DIF sequences) for the $625 / 50$ system.

4.6.2.1.2 Emphasis

Audio encoding is carried out with the first order preemphasis of $50 / 15 \mu \mathrm{~s}$. For analog input recording, emphasis shall be off in the default state.

4.6.2.1.3 Audio error code

In the encoded audio data, 8000_{h} shall be assigned as an audio error code to indicate an invalid audio sample. This code corresponds to negative full-scale value in ordinary twos complement representation. When the encoded data includes 8000_{h}, it shall be converted to 8001_{h}.

4.6.2.1.4 Relative audio-video timing

The audio frame duration equals a video frame period. An audio frame begins with an audio sample acquired within the duration of minus 50 samples relative to zero samples from the first pre-equalizing pulse of the vertical blanking period of the input video signal. The first pre-equalizing pulse means the start of line number 1 for the $525 / 60$ system, and the middle of line number 623 for the $625 / 50$ system.

4.6.2.1.5 Audio frame processing

This standard provides audio frame processing in the locked mode.
The sampling frequency of the audio signal is synchronous with the video frame frequency. Audio data are processed in frames. For an audio channel, each frame contains 1602 or 1600 audio samples for the

525/60 system or 1920 audio samples for the $625 / 50$ system. For the $525 / 60$ system, the number of audio samples per frame shall follow the five-frame sequence as shown below:
$1600,1602,1602,1602,1602$ samples.

The sample audio capacity shall be capable of 1620 samples per frame for the 525/60 system or 1944 samples per frame for the 625/50 system. The unused space at the end of each frame is filled with arbitrary values.

4.6.2.2 Audio shuffling

The 16-bit audio data word is divided into two bytes; the upper byte which contains MSB, and the lower byte LSB, as shown in figure 9. Audio data shall be shuffled over DIF sequences and DIF blocks within a frame. The data bytes are defined as $D_{n}(n=0,1,2, \ldots)$ which is sampled at $n t h$ order within a frame and shuffled by each D_{n} unit.

The data shall be shuffled through a process expressed by the following equations:
525/60 system:
DIF sequence number:
(INT $(n / 3)+2 \times(n \bmod 3)) \bmod 5$ for $\mathrm{CH} 1, \mathrm{CH} 3$
$($ INT $(n / 3)+2 \times(n \bmod 3)) \bmod 5+5$ for $\mathrm{CH} 2, \mathrm{CH} 4$
Audio DIF block number:
$3 \times(\mathrm{n} \bmod 3)+\mathrm{INT}((\mathrm{n} \bmod 45) / 15)$ where $\mathrm{FSC}=0: \mathrm{CH} 1, \mathrm{CH} 2$

FSC = 1: CH3, CH4
Byte position number:
$8+2 \times \operatorname{INT}(\mathrm{n} / 45)$ for the most significant byte
$9+2 \times \operatorname{INT}(\mathrm{n} / 45)$ for the least significant byte where $\mathrm{n}=0$ to 1619

625/50 system:
DIF sequence number:
(INT $(\mathrm{n} / 3)+2 \times(\mathrm{n} \bmod 3)) \bmod 6$ for $\mathrm{CH} 1, \mathrm{CH} 3$
$(\operatorname{INT}(n / 3)+2 \times(n \bmod 3)) \bmod 6+6$ for CH2, CH4
Audio DIF block number:
$3 \times(\mathrm{n} \bmod 3)+\mathrm{INT}((\mathrm{n} \bmod 54) / 18)$
where $\mathrm{FSC}=0$: $\mathrm{CH} 1, \mathrm{CH} 2$
FSC = 1: CH3, CH4
Byte position number:
$8+2 \times \operatorname{INT}(\mathrm{n} / 54)$ for the most significant byte
$9+2 \times \mathrm{INT}(\mathrm{n} / 54)$ for the least significant byte where $\mathrm{n}=0$ to 1943

Figure 9 - Conversion of audio sample to audio data bytes

4.6.2.3 Audio auxiliary data (AAUX)

AAUX shall be added to the shuffled audio data as shown in figures 8 and 10. The AAUX pack shall include an AAUX pack header and data (AAUX payload). The length of the AAUX pack shall be 5 bytes as shown in figure 10, which depicts the AAUX pack arrangement. Packs are numbered from 0 to 8 as shown in figure 10. This number is called an audio pack number.

Figure 10 - Arrangement of AAUX packs in audio auxiliary data

Table 15 shows the mapping of an AAUX pack. An AAUX source pack (AS) and an AAUX source control pack (ASC) must be included in the compressed stream.

Table 15 - Mapping of AAUX pack in a DIF sequence

Audio pack number		
Even DIF sequence	Odd DIF sequence	
3	0	AS
4	1	ASC

where
Even DIF sequence:
DIF sequence number $0,2,4,6,8$ for $525 / 60$ system
DIF sequence number $0,2,4,6,8,10$ for $625 / 50$ system
Odd DIF sequence:
DIF sequence number $1,3,5,7,9$ for $525 / 60$ system
DIF sequence number $1,3,5,7,9,11$ for $625 / 50$ system

4.6.2.3.1 AAUX source pack (AS)

The AAUX source pack is configured as shown in table 16.

Table 16 - Mapping of AAUX source pack

MSB PC0 0							LSB	
		1	0	1	0	0	0	0
PC1	LF	Res	AF SIZE					
PC2	0	CHN		Res	AUDIO MODE			
PC3	Res	Res	50/60	STYPE				
PC4	Res	Res	SMP			QU		

LF: Locked mode flag
Locking condition of audio sampling frequency with video signal
0 = Locked mode; 1 = Reserved
AF SIZE: The number of audio samples per frame
010100b $=1600$ samples/frame (525/60 system)
010110b = 1602 samples/frame (525/60 system)
011000b $=1920$ samples/frame (625/50 system)
Others = Reserved
CHN: The number of audio channels within an audio block
00b = One audio channel per audio block
Others = Reserved
The audio block is composed of 45 DIF blocks of the audio section in five consecutive DIF sequences for the $525 / 60$ system, and 54 DIF blocks of the audio section in six consecutive DIF sequences for the 625/50 system.

AUDIO MODE: The contents of the audio signal on each audio channel

$$
\begin{aligned}
& 0000 \mathrm{~b}=\mathrm{CH} 1(\mathrm{CH} 3) \\
& 0001 \mathrm{~b}=\mathrm{CH} 2(\mathrm{CH} 4) \\
& 1111 \mathrm{~b}=\text { Invalid audio data } \\
& \text { Others }=\text { Reserved }
\end{aligned}
$$

50/60:
$0=60$-field system
1 = 50 -field system
STYPE: STYPE defines audio blocks per video frame
00000b $=2$ audio blocks
00010b $=4$ audio blocks
Others = Reserved
SMP: Sampling frequency
000b $=48 \mathrm{kHz}$
Others = Reserved
QU: Quantization
$000 b=16$ bits linear
Others $=$ Reserved
Res: Reserved bit for future use
Default value shall be set to 1

4.6.2.3.2 AAUX source control pack (ASC)

The AAUX source control pack is configured as shown in table 17.

Table 17 - Mapping of AAUX source control pack

MSB							LSB	
PC0	0	1	0	1	0	0	0	1
PC1	CGMS		Res	Res	Res	Res	EFC	
PC2	REC ST	REC END	FADE ST	FADE END	Res	Res	Res	Res
PC3	DRF	SPEED						
PC4	Res							

CGMS: Copy generation management system

CGMS		Copy possible generation
0	0	Copy free
0	1	
1	0	Reserved
1	1	

EFC: Emphasis audio channel flag
$00 \mathrm{~b}=$ emphasis off
$01 \mathrm{~b}=$ emphasis on
Others = reserved
EFC shall be set for each audio block.
REC ST: Recording start point
$0=$ recording start point
1 = not recording start point
At a recording start frame, REC ST 0 lasts for a duration of one audio block which is equal to 5 or 6 DIF sequences for each audio channel.

REC END: Recording end point
$0=$ recording end point
1 = not recording end point

At a recording end frame, REC END 0 lasts for a duration of one audio block which is equal to 5 or 6 DIF sequences for each audio channel.

FADE ST: Fading of recording start point
$0=$ fading off
1 = fading on
The information of FADE ST shall be effective only at the recording start frame (REC ST $=0$). If FADE ST is 1 at the recording start frame, the output audio signal should be faded in from the first sampling signal of the frame. If FADE ST is 0 at the recording start frame, the output audio signal should not be faded.

FADE END: Fading of recording end point
0 = fading off
1 = fading on
The information of FADE END shall be effective only at the recording end frame (REC END $=0$). If FADE END is 1 at the recording end frame, the output audio signal should be faded out to the last sampling signal of the frame. If FADE END is 0 at the recording end frame, the output audio signal should not be faded.

DRF: Direction flag
0 = reverse direction
1 = forward direction
SPEED: Shuttle speed of VTR

	Shuttle speed of VTR	
SPEED	$525 / 60$ system	$625 / 50$ system
0000000	$0 / 120(=0)$	$0 / 100(=0)$
0000001	$1 / 120$	$1 / 100$
$:$	$:$	$:$
1100100	$100 / 120$	$100 / 100(=1)$
$:$	$:$	Reserved
1111000	$120 / 120(=1)$	Reserved
$:$	Reserved	Reserved
1111110	Reserved	Reserved
111111	Data invalid	Data invalid

RES: Reserved bit for future use.
Default value shall be set to 1 .

4.7 Video section

4.7.1 ID

The ID part of each DIF block in the video section is described in 4.3.1. The section type shall be 100 .

4.7.2 Data

The data part (payload) of each DIF block in the video section consists of 77 bytes of video data which shall be sampled, shuffled, and encoded. Video data of every video frame are processed as described in clause 5.

4.7.2.1 DIF block and compressed macro block

Correspondence between video DIF blocks and video compressed macro blocks is shown in tables 18 and 19. Table 18 shows correspondence between video DIF blocks for $50 \mathrm{Mb} / \mathrm{s}$ structure and video compressed macro blocks of 4:2:2 compression. Table 19 shows correspondence between the video DIF blocks for $25 \mathrm{Mb} /$ s structure and video compressed macro blocks of 4:1:1 compression.

The rule defining the correspondence between video DIF blocks and compressed macro blocks is shown below:

```
50 Mb/s structure - 4:2:2 compression
    if (525/60 system) n= 10 else n=12;
    for (i = 0; i<n; i++){
        a=i;
        b = (i - 6) mod n;
        c = (i-2) mod n;
        d=(i-8) mod n;
        e=(i-4) mod n;
        p = a;
        q=3;
        for (j = 0; j<5; j++){
            for (k=0; k<27; k++){
                    V (5 x k + q),0 of DSNp = CM 2i,j,k;
                    V (5 * k + q),1 of DSNp = CM 2i + 1,j,k;
            }
                    if (q== 3) {p=b;q=1;}
            else if (q== 1) {p=c;q=0;}
            else if (q== 0) {p=d; q=2;}
            else if (q== 2) {p=e;q=4;}
        }
    }
```

$25 \mathrm{Mb} / \mathrm{s}$ structure -- 4:1:1 compression
if ($525 / 60$ system $) \mathrm{n}=10$ else $\mathrm{n}=12$;
for ($\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$) $\{$
$\mathrm{a}=\mathrm{i}$;
$\mathrm{b}=(\mathrm{i}-6) \bmod \mathrm{n}$;
$\mathrm{c}=(\mathrm{i}-2) \bmod \mathrm{n}$;
$\mathrm{d}=(\mathrm{i}-8) \bmod \mathrm{n}$;
e $=(\mathrm{i}-4) \bmod \mathrm{n}$;
$\mathrm{p}=\mathrm{a}$;
$\mathrm{q}=3$;
for $(\mathrm{j}=0 ; \mathrm{j}<5 ; \mathrm{j}++)\{$
for ($k=0 ; k<27 ; k++$)
$\mathrm{V}(5 \times \mathrm{k}+\mathrm{q}), 0$ of DSNp $=\mathrm{CM} \mathrm{i}, \mathrm{j}, \mathrm{k} ;$
\}
if $(q==3)\{p=b ; q=1 ;\}$
else if $(q==1)\{p=c ; q=0 ;\}$
else if $(q==0)\{p=d ; q=2 ;\}$
else if $(q==2)\{p=e ; q=4 ;\}$
\}
\}

Table 18 - Video DIF blocks and compressed macro blocks for $50 \mathrm{Mb} / \mathrm{s}$ structure - 4:2:2 compression

DIF sequence number	DIF block	Compressed macro block
0	V0,0	CM 4,2,0
	V0,1	CM 5,2,0
	V1,0	CM 12,1,0
	V1,1	CM 13,1,0
	V2,0	CM 16,3,0
	V2,1	CM 17,3,0
	:	:
	V134,0	CM 8,4,26
	V134,1	CM 9,4,26
1	V0,0	CM 6,2,0
	V0,0	CM 7,2,0
	V1,0	CM 14,1,0
	V1,1	CM 15,1,0
	V2,0	CM 18,3,0
	V2,1	CM 19,3,0
	:	:
	V134,0	CM 10,4,26
	V134,1	CM 11,4,26
:	:	:
:	:	:
n-1	V0,0	CM 2,2,0
	V0,1	CM 3,2,0
	V1,0	CM 10,1,0
	V1,1	CM 11,1,0
	V2,0	CM 14,3,0
	V2,1	CM 15,3,0
	:	:
	V134,0	CM 6,4,26
	V134,1	CM 7,4,26
NOTE - $\mathrm{n}=10$ for 525/60 system; $\mathrm{n}=12$ for 625/50 system.		

Table 19 - Video DIF blocks and compressed macro blocks for $25 \mathrm{Mb} / \mathrm{s}$ structure - 4:1:1 compression

DIF sequence number	DIF block	Compressed macro block
0	V0,0	CM 2,2,0
	V1,0	CM 6,1,0
	V2,0	CM 8,3,0
	V3,0	CM 0,0,0
	V4,0	CM 4,4,0
	:	:
	V133,0	CM 0,0,26
	V134,4	CM 4,4,26
1	V0,0	CM 3,2,0
	V1,0	CM 7,1,0
	V2,0	CM 9,3,0
	V3,0	CM 1,0,0
	V4,0	CM 5,4,0
	:	:
	V133,0	CM 1,0,26
	V134,0	CM 5,4,26
:	:	:
:	:	:
:	:	:
$\mathrm{n}-1$	V0,0	CM 1,2,0
	V1,0	CM 5,1,0
	V2,0	CM 7,3,0
	V3,0	CM n - 1,0,0
	V4,0	CM 3,4,0
	:	:
	V133,0	CM n - 1,0,26
	V134,0	CM 3,4,26
NOTE $-\mathrm{n}=10$ for 525/60 system; $\mathrm{n}=12$ for 625/50 system.		

5 Video compression

This clause includes video compression processing for 4:2:2 and 4:1:1 compression.
NOTE - Values Y, C_{R}, C_{B} used in this clause are equivalent to values $Y^{\prime}, C_{R}{ }^{\prime}, C_{B}$, that have non-linear transfer characteristic commonly described as gamma corrected.

5.1 Video structure

The video signal is sampled with a frequency of 13.5 MHz for luminance (Y) and 6.75 MHz for color difference $\left(\mathrm{C}_{\mathrm{R}}, \mathrm{C}_{\mathrm{B}}\right)$. The data of the vertical blanking area and the horizontal blanking area are discarded, then the remainder of the video data is shuffled in the video frame. The original quantity of video data shall be reduced by use of bit-rate reduction techniques which adopt DCT and VLC.

The process of the bit-rate reduction is as follows: Video data are assigned to a DCT block (8×8 samples). Two luminance DCT blocks and two color-difference DCT blocks form a macro block for 4:2:2 compression. For 4:1:1 compression, four luminance DCT blocks and two color-difference DCT blocks form a macro block. Five macro blocks constitute a video segment. A video segment is further compressed into five compressed macro blocks by use of the DCT and VLC techniques.

5.1.1 Sampling structure

The sampling structure is identical to the sampling structure of 4:2:2 component television signals described in ITU-R BT.601. Sampling of luminance (Y) and two color-difference signals (C_{R}, C_{B}) in the 4:2:2 structure are described in table 20.

Table 20 - Construction of video signal sampling (4:2:2)

		525/60 system	625/50 system
Sampling frequency	Y	13.5 MHz	
	$\mathrm{C}_{\mathrm{R}}, \mathrm{C}_{\mathrm{B}}$	6.75 MHz	
Total number of pixels per line	Y	858	864
	$\mathrm{C}_{\mathrm{R}}, \mathrm{C}_{\mathrm{B}}$	429	432
Number of active pixels per line	Y	720	
	$\mathrm{C}_{\mathrm{R}}, \mathrm{C}_{\mathrm{B}}$	360	
Total number of lines per frame		525	625
Number of active lines per frame		480	576
Active line numbers	Field 1	23 to 262	23 to 310
	Field 2	285 to 524	335 to 622
Quantization		Each sample is linearly quantized to 8 bits for $\mathrm{Y}, \mathrm{C}_{\mathrm{R}}, \mathrm{C}_{\mathrm{B}}$	
Relation between video signal level and quantization level	Scale	1 to 254	
	Y	Video signal level of white: 235	Quantized level 220
		Video signal level of black: 16	
	$\mathrm{C}_{\mathrm{R}}, \mathrm{C}_{B}$	Video signal level of gray: 128	Quantized level 225

Line structure in one frame
For the 525/60 system, 240 lines for Y, C_{R}, and C_{B} signals from each field shall be transmitted. For the $625 / 50$ system, 288 lines for Y, C_{R}, and C_{B} signals from each field shall be transmitted. The transmitted lines on a TV frame are defined in table 20.

Pixel structure in one frame

4:2:2 compression -

All sampled pixels, 720 luminance pixels per line and 360 color-difference pixels, are retained for processing as shown in figures 11 and 12. The sampling process starts simultaneously for both luminance and color-difference signals. Each pixel has a value from -127 to +126 which is obtained by the subtraction of 128 from the input video signal level.

4:1:1 compression -

All sampled luminance pixels, 720 pixels per line, are retained for processing. Of 360 color-difference pixels sampled per line, every other pixel is discarded, leaving 180 pixels for processing. The sampling process starts simultaneously for both luminance and color-difference signals. Figures 13 and 14 show the sampling process in detail. Each pixel has a value in range from -127 to +126 which is obtained by the subtraction of 128 from the input video signal level.

Figure 11 - Transmitting samples of 525/60 system for 4:2:2 compression

Figure 12 - Transmitting samples of 625/50 system for 4:2:2 compression

Where
: Transmitting samples
: Descarded samples

Figure 13 - Transmitting samples of 525/60 system for 4:1:1 compression

Figure 14 - Transmitting samples of 625/50 system for 4:1:1 compression

5.1.2 DCT block

The Y, C_{R}, and C_{B} pixels in one frame shall be divided into DCT blocks as shown in figure 15. All DCT blocks for $4: 2: 2$ compression and DCT blocks for $4: 1: 1$ compression, with the exception of the rightmost DCT blocks in C_{R} and C_{B} for $4: 1: 1$ compression, are structured as a rectangular area of eight vertical lines and eight horizontal pixels for each DCT block. The value of x shows the horizontal coordinate from the left and the value of y shows the vertical coordinate from the top. Odd lines of $y=1,3,5,7$ are the horizontal lines of field one, and even lines of $y=0,2,4,6$ are those of field two.

In the 4:1:1 compression mode, the rightmost DCT blocks in C_{R} and C_{B} are structured with 16 vertical lines and four horizontal pixels. The rightmost DCT block shall be reconstructed to eight vertical lines and eight horizontal pixels by moving the lower part of eight vertical lines and four horizontal pixels to the higher part of eight vertical lines and four horizontal pixels as shown in figure 16.

DCT block arrangement in one frame for 525/60 system
The arrangement of horizontal DCT blocks in one frame in the 4:2:2 compression mode is shown in figure 17, and in the $4: 1: 1$ compression mode in figure 18. The same horizontal arrangement is repeated with 60 DCT blocks in the vertical direction. Pixels in one frame are divided into 10,800 DCT blocks for 4:2:2 compression and 8,100 DCT blocks for 4:1:1 compression.

4:2:2 compression

Y: 60 vertical DCT blocks $\times 90$ horizontal DCT blocks $=5400$ DCT blocks
C_{R} : 60 vertical DCT blocks $\times 45$ horizontal DCT blocks $=2700$ DCT blocks
C_{B} : 60 vertical DCT blocks $\times 45$ horizontal DCT blocks $=2700$ DCT blocks

4:1:1 compression

Y: 60 vertical DCT blocks $\times 90$ horizontal DCT blocks $=5400$ DCT blocks
$\mathrm{C}_{\mathrm{R}}: 60$ vertical DCT blocks $\times 22.5$ horizontal DCT blocks $=1350$ DCT blocks
C_{B} : 60 vertical DCT blocks $\times 22.5$ horizontal DCT blocks $=1350$ DCT blocks
DCT block arrangement in one frame for 625/50 system
The arrangement of horizontal DCT blocks in one frame for the 4:2:2 compression mode is shown in figure 17, and for the $4: 1: 1$ compression mode in figure 18. The same horizontal arrangement is repeated to 72 DCT blocks in the vertical direction. Pixels in one frame are divided into 12,960 DCT blocks for 4:2:2 compression and 9,720 DCT blocks for 4:1:1 compression.

4:2:2 compression

Y: 72 vertical DCT blocks $\times 90$ horizontal DCT blocks $=6480$ DCT blocks
$\mathrm{C}_{\mathrm{R}}: 72$ vertical DCT blocks $\times 45$ horizontal DCT blocks $=3240$ DCT blocks
$\mathrm{C}_{\mathrm{B}}: 72$ vertical DCT blocks $\times 45$ horizontal DCT blocks $=3240$ DCT blocks

4:1:1 compression

Y: 72 vertical DCT blocks $\times 90$ horizontal DCT blocks $=6480$ DCT blocks
$\mathrm{C}_{\mathrm{R}}: 72$ vertical DCT blocks $\times 22.5$ horizontal DCT blocks $=1620$ DCT blocks
C_{B} : 72 vertical DCT blocks $\times 22.5$ horizontal DCT blocks $=1620$ DCT blocks

5.1.3 Macro block

As shown in figure 19, each macro block in the 4:2:2 compression mode consists of four DCT blocks. As shown in figure 20, each macro block in the $4: 1: 1$ compression mode consists of six DCT blocks. In the 4:1:1 compression mode, each macro block consists of four horizontally adjacent DCT blocks of Y, one DCT block of C_{R}, and one DCT block of C_{B} on a television screen. The rightmost macro block on the

SMPTE 314M

television screen consists of four vertically and horizontally adjacent DCT blocks of Y , one DCT block of C_{R}, and one DCT block of C_{B}.

Figure 15 - DCT block and pixel coordinates

Figure 16 - Rightmost DCT block in color-difference signal for 4:1:1 compression mode

Luminance DCT block

Figure 17 - DCT block arrangements for 4:2:2 compression

Luminance DCT block

Colour difference DCT block

Figure 18 - DCT block arrangement for 4:1:1 compression

Figure 19 - Macro block and DCT blocks for 4:2:2 compression

Except for the rightmost macro block

For the rightmost macro block

Figure 20 - Macro block and DCT blocks for 4:1:1 compression

Macro block arrangement in one frame for 525/60 system -
The arrangement of macro blocks in one frame is shown in figure 21 for $4: 2: 2$ compression and figure 22 for $4: 1: 1$ compression. Each small rectangle shows a macro block. Pixels in one frame are distributed into 2700 macro blocks for $4: 2: 2$ compression and 1350 macro blocks for $4: 1: 1$ compression.

4:2:2 compression

60 vertical macro blocks $\times 45$ horizontal macro blocks $=2700$ macro blocks
4:1:1 compression
60 vertical macro blocks $\times 22.5$ horizontal macro blocks $=1350$ macro blocks

Macro block arrangement in one frame for 625/50 system -
The arrangement of macro blocks in one frame is shown in figure 23 for $4: 2: 2$ compression and figure 24 for $4: 1: 1$ compression. Each small rectangle shows a macro block. Pixels in one frame are distributed into 3240 macro blocks for $4: 2: 2$ compression and 1620 macro blocks for 4:1:1 compression.

4:2:2 compression
72 vertical macro blocks $\times 45$ horizontal macro blocks $=3240$ macro blocks

4:1:1 compression

72 vertical macro blocks $\times 22.5$ horizontal macro blocks $=1620$ macro blocks

Figure 21 - Super blocks and macro blocks in one television frame for 525/60 system for 4:2:2 compression

Figure 22 - Super blocks and macro blocks in one television frame for 525/60 system for 4:1:1 compression

Figure 23 - Super blocks and macro blocks in one television frame for 625/50 system for 4:2:2 compression

Figure 24 - Super blocks and macro blocks in one television frame for 625/50 system for 4:1:1 compression

5.1.4 Super block

Each super block consists of 27 macro blocks.
Super block arrangement in one frame for 525/60 system
The arrangement of super blocks in one frame is shown in figure 21 for 4:2:2 compression and figure 22 for $4: 1: 1$ compression. Each super block consists of 27 adjacent macro blocks, and its boundary is marked by a heavy line. The total number of pixels in a frame is distributed into 100 super blocks for 4:2:2 compression or 50 super blocks for 4:1:1 compression.

4:2:2 compression

20 vertical super blocks $\times 5$ horizontal super blocks $=100$ super blocks
4:1:1 compression
10 vertical super blocks $\times 5$ horizontal super blocks $=50$ super blocks
Super block arrangement in one frame for 625/50 system
The arrangement of super blocks in one frame is shown in figure 23 for 4:2:2 compression and figure 24 for $4: 1: 1$ compression. Each super block consists of 27 adjacent macro blocks, and its boundary is marked by a heavy line. The total number of pixels in a frame is distributed into 120 super blocks for 4:2:2 compression or 60 super blocks for 4:1:1 compression.

4:2:2 compression

24 vertical super blocks $\times 5$ horizontal super blocks $=120$ super blocks

4:1:1 compression

12 vertical super blocks $\times 5$ horizontal super blocks $=60$ super blocks

5.1.5 Definition of a super block number, a macro block number and value of the pixel

Super block number
The super block number in a frame is expressed as $S \mathrm{i}, \mathrm{j}$ as shown in figures $21,22,23$, and 24.
S i, j where i: the vertical order of the super block
$\mathrm{i}=0, \ldots, \mathrm{n}-1$
where
n : the number of vertical super blocks in a video frame
$\mathrm{n}=10 \times \mathrm{m}$ for the 525/60 system
$\mathrm{n}=12 \times \mathrm{m}$ for the $625 / 50$ system
m : the compression type
$m=1$ for $4: 1: 1$ compression
$m=2$ for $4: 2: 2$ compression
j : the horizontal order of the super block

$$
j=0, \ldots, 4
$$

Macro block number
The macro block number is expressed as $\mathrm{M} \mathrm{i}, \mathrm{j}$, k . The symbol k is the macro block order in the super block as shown in figure 25 for 4:2:2 compression and figure 26 for $4: 1: 1$ compression. The small rectangle in these figures shows a macro block and a number in the small rectangle indicates k.
$\mathrm{Mi}, \mathrm{j}, \mathrm{k}$ where i, j : the super block order number
k : the macro block order in the super block
$\mathrm{k}=0, \ldots, 26$

$$
\text { Super block S } \quad i, j \quad(i=0, \ldots, n-1, j=0, \ldots, 4)
$$

0	5	6	11	12	17	18	23	24
1	4	7	10	13	16	19	22	25
2	3	8	9	14	15	20	21	26

$$
\begin{array}{ll}
\text { Where } \quad & n=20: 525 / 60 \text { system } \\
& n=24: 625 / 50 \text { system }
\end{array}
$$

Figure 25 - Macro block order in a super block for 4:2:2 compression

Super block S i, 0, S i, $2(\mathrm{i}=0, \quad \ldots, \mathrm{n}-1)$

0	11	12	23	24
1	10	13	22	25
2	9	14	21	26
3	8	15	20	
4	7	16	19	
5	6	17	18	

Super block S i, 1, S i, $3(\mathrm{i}=0, \quad \ldots, \mathrm{n}-1)$

	8	9	20	21
	7	10	19	22
0	6	11	18	23
1	4	12	17	24
2	3	13	16	25

Super block S i, 4 ($\mathrm{i}=0, \quad \ldots, \mathrm{n}-1$)

0	11	12	23	24
1	10	13	22	
2	9	14	21	25
3	8	15	20	
4	7	16	19	26
5	6	17	18	
Wheren$\mathrm{n}=10: 525 / 60$ system $\mathrm{n}=12: 625 / 50$ system				

Figure 26 - Macro block order in a super block for 4:1:1 compression

Pixel location

Pixel location is expressed as $P \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{I}(\mathrm{x}, \mathrm{y})$. The pixel is indicated as the suffix of $\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{I}(\mathrm{x}, \mathrm{y})$. The symbol is the DCT block order in a macro block as shown in figures 19 and 20 . The rectangle in the figure shows a DCT block, and a DCT number in the rectangle expresses I. Symbol x and y are the pixel coordinate in the DCT block as described in 5.1.2.

Pi, j, k, l (x, y) where i, j, k: the macro block number
I: the DCT block order in the macro block
(x, y) : the pixel coordinate in the DCT block
$x=0, \ldots, 7$
$y=0, \ldots, 7$

5.1.6 Definition of video segment and compressed macro block

A video segment consists of five macro blocks assembled from various areas within the video frame:

```
Ma, 2, k where a = (i+2m) mod n
Mb, 1, k where b = (i+6m) mod n
Mc, 3, k where c = (i+8m) mod n
Md, 0, k where d = (i+0) mod n
Me, 4, k where e = (i+4m) mod n
where i: the vertical order of the super block
    i = 0, ..., n-1
    n}\mathrm{ : the number of vertical super blocks in a video frame
        n=10\timesm}\mathrm{ for the 525/60 system
        n=12\timesm}\mathrm{ for the 625/50 system
    m}\mathrm{ : the compression type
        m = 1 for 4:1:1 compression
        m = 2 for 4:2:2 compression
    k: the macro block order in the super block
        k = 0, .., 26
```

Each video segment before the bit-rate reduction is expressed as Vi, k which consists of $\mathrm{Ma}, 2, \mathrm{k}$; $\mathrm{Mb}, 1$, k; Mc, 3, k; Md, 0, k; and Me, 4, k.

The bit-rate reduction process is operated sequentially from $\mathrm{Ma}, 2, \mathrm{k}$ to $\mathrm{Me}, 4, \mathrm{k}$. The data in a video segment are compressed and transformed to a 385-byte data stream. A compressed video data consists of five compressed macro blocks. Each compressed macro block consists of 77 bytes and is expressed as CM. Each video segment after the bit-rate reduction is expressed as CV i, k which consists of CM a, 2, k; CM b, 1, k; CM c, 3, k; CM d, 0, k; and CMe, 4, k as shown below.

CMa, 2, k:

This block includes all parts or most parts of the compressed data from macro block $\mathrm{Ma}, 2$, k and may include the compressed data of macro block Mb, 1 , k ; or $\mathrm{Mc}, 3$, k ; or $\mathrm{Md}, 0, \mathrm{k}$; or Me, 4 , k .

CMb, 1, k:

This block includes all parts or most parts of the compressed data from macro block $\mathrm{Mb}, 1$, k and may include the compressed data of macro block Ma, 2, k; or Mc, 3, k; or Md, 0 , k; or Me, 4, k.

CMc, 3, k
This block includes all parts or most parts of the compressed data from macro block Mc, 3, k and may include the compressed data of macro block Ma, 2 , k ; or $\mathrm{Mb}, 1, \mathrm{k}$; or Md, 0 , k ; or Me, $4, \mathrm{k}$.

CMd, 0, k
This block includes all parts or most parts of the compressed data from macro block Md, 0 , k and may include the compressed data of macro block Ma, 2 , k ; or $\mathrm{Mb}, 1$, k ; or $\mathrm{Mc}, 3$, k ; or Me, 4 , k.

CMe, 4, k :
This block includes all parts or most parts of the compressed data from macro block Me, 4, k and may include the compressed data of macro block Ma, 2, k; or Mb, 1, k; or Mc, 3, k; or Md, 0, k.

5.2 DCT processing

DCT blocks are comprised of two fields; each field providing pixels from 4 vertical lines and 8 horizontal pixels. In this clause, the DCT transformation from 64 pixels in a DCT block whose numbers are $\mathrm{i}, \mathrm{j}, \mathrm{k}$, I (x, y) to 64 coefficients whose numbers are $i, j, k, l(h, v)$ is described. $P i, j, k, I(x, y)$ is the value of the pixel and $\mathrm{C} i, j, k, l(h, v)$ is the value of the coefficient.

For $h=0$ and $v=0$, the coefficient is called DC coefficient. Other coefficients are called AC coefficients.

5.2.1 DCT mode

Two modes, $8-8-D C T$ and $2-4-8-D C T$, are selectively used to optimize the data-reduction process, depending upon the degree of content variations between the two fields of a video frame. The two DCT modes are defined:

8-8-DCT mode

DCT

$$
\begin{aligned}
& C, i, j, k, l(h, v)=C(v) C(h) \quad \sum_{y=0}^{7} \quad \sum_{x=0}^{7} \\
& (P i, j, k, l(x, y) \operatorname{Cos}(\pi v(2 y+1) / 16) \operatorname{COS}(\pi h(2 x+1) / 16))
\end{aligned}
$$

Inverse DCT:
$P, i, j, k, I(x, y)=\quad \sum_{v=0}^{7} \quad \sum_{h=0}^{7}(C(v) C(h)$
$C, i, j, k, l(h, v) \operatorname{COS}(\pi v(2 y+1) / 16) \operatorname{COS}(\pi h(2 x+1) / 16))$
where

$$
\begin{array}{ll}
C(h)=0,5 / \sqrt{ } 2 & \text { for } h=0 \\
C(h)=0,5 & \text { for } h=1 \text { to } 7 \\
C(v)=0,5 / \sqrt{ } 2 & \text { for } v=0 \\
C(v)=0,5 & \text { for } v=1 \text { to } 7
\end{array}
$$

2-4-8 DCT mode

DCT

$$
\text { C, i, j, k, l (h, u) = C (u) C (h) } \quad \begin{gathered}
3 \\
z=0
\end{gathered} \sum_{x=0}^{7}
$$

$$
((P \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{I}(\mathrm{x}, 2 \mathrm{z})+\mathrm{Pi}, \mathrm{j}, \mathrm{k}, \mathrm{I}(\mathrm{x}, 2 \mathrm{z}+1)) \mathrm{KC})
$$

$\mathrm{C}, \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}(\mathrm{h}, \mathrm{u}+4)=\mathrm{C}(\mathrm{u}) \mathrm{C}(\mathrm{h}) \quad \sum_{\mathrm{z}=0}^{3} \quad \sum_{\mathrm{x}=0}^{7}$

$$
((P \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{I}(\mathrm{x}, 2 \mathrm{z})-\mathrm{Pi}, \mathrm{j}, \mathrm{k}, \mathrm{I}(\mathrm{x}, 2 \mathrm{z}+1)) \mathrm{KC})
$$

Inverse DCT:
$P, i, j, k, l(x, 2 z)=\quad \sum_{u=0}^{3} \quad \sum_{h}^{=}=0$
(C i, j, k, I (h, u) + C, i, j, k, I (h, u + 4)) KC)
$P, i, j, k, l(x, 2 z+1)=\sum_{u=}^{\sum_{=}^{7}} \sum_{h}^{=}(C(u) C(h)$
($\mathrm{C}, \mathrm{j}, \mathrm{j}, \mathrm{k}, \mathrm{I}(\mathrm{h}, \mathrm{u})-\mathrm{C}, \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{I}(\mathrm{h}, \mathrm{u}+4)) \mathrm{KC})$
where

```
u=0,\ldots,3
z=INT (y / 2)
KC = COS (mu(2z+1)/8) COS (mh(2x + 1)/16)
C(h) = 0,5 / \sqrt{ 2 for h = 0}{0}=0
C(h)=0,5 for h=1 to 7
C(u)=0,5/\sqrt{}{2} for u=0
C(u)=0,5 for u=1 to 7
```


5.2.2 Weighting

DCT coefficients shall be weighted by the process as described below. $\mathrm{W}(\mathrm{h}, \mathrm{v})$ expresses weight for $\mathrm{C} \mathrm{i}, \mathrm{j}$, $\mathrm{k}, \mathrm{l}(\mathrm{h}, \mathrm{v})$ of the DCT coefficient.

8-8-DCT mode
For $\mathrm{h}=0$ and $\mathrm{v}=0 \quad \mathrm{~W}(\mathrm{~h}, \mathrm{v})=1 / 4$
For others
$W(h, v)=w(h) w(v) / 2$
2-4-8- DCT mode

```
For \(\mathrm{h}=0\) and \(\mathrm{v}=0 \mathrm{~W}(\mathrm{~h}, \mathrm{v})=1 / 4\)
For \(v<4 \quad W(h, v)=w(h) w(2 v) / 2\)
For others \(\quad W(h, v)=w(h) w(2(v-4)) / 2\)
    where
        \(w(0)=1\)
        \(\mathrm{w}(1)=\mathrm{CS} 4 /(4 \times \operatorname{CS} 7 \times\) CS2 \()\)
        \(\mathrm{w}(2)=\mathrm{CS} 4 /(2 \times\) CS6 \()\)
        \(w(3)=1 /(2 \times\) CS5 \()\)
        \(w(4)=7 / 8\)
        \(w(5)=\) CS4 / CS3
        \(w(6)=\) CS4 / CS2
        \(\mathrm{w}(7)=\mathrm{CS} 4 / \mathrm{CS} 1\)
    where \(\operatorname{CSm}=\operatorname{COS}(\mathrm{mp} / 16) \mathrm{m}=1\) to 7
```


5.2.3 Output order

Figure 27 shows the output order of the weighted coefficients.

Figure 27 - Output order of weighted DCT block

5.2.4 Tolerance of DCT with weighting

Output error between the reference DCT and the tested DCT should satisfy the tolerances of the following cases:

Probability of occurrence of error;
Mean square errors for all coefficients;
Maximum value of mean square error for each DCT block;
All input pixel values of a DCT block are the same.

5.3 Quantization

5.3.1 Introduction

Weighted DCT coefficients are first quantized to 9 -bit words, then divided by quantization in order to limit the amount of data in one video segment to five compressed macro blocks.

5.3.2 Bit assignment for quantization

Weighted DCT coefficients are represented as follows:
DC coefficient value (9 bits):
b8 b7 b6 b5 b4 b3 b2 b1 b0
twos complement (-255 to 255)
AC coefficient value (10 bits):
s b8 b7 b6 b5 b4 b3 b2 b1 b0
1 sign bit +9 bits of absolute value (-511 to 511)

5.3.3 Class number

Each DCT block shall be classified into four classes by the definitions as described in table 21. For selecting the quantization step, the class number is used. Both c 1 and c 0 express the class number and
are stored in the DC coefficient of compressed DCT blocks as described in 5.5. For reference, table 22 shows an example of the classification.

5.3.4 Initial scaling

Initial scaling is an operation for AC coefficients to transform from 10 bits to 9 bits. Initial scaling shall be done as follows:

For class number $=0,1,2$
input data s b8 b7 b6 b5 b4 b3 b2 b1 b0
output data s b7 b6 b5 b4 b3 b2 b1 b0
For class number $=3$
input data s b8 b7 b6 b5 b4 b3 b2 b1 b0
output data s b8 b7 b6 b5 b4 b3 b2 b1

Table 21 - Class number and the DCT block

Class number			DCT block	
	$c 1$	$c 0$	Quantization noises	Maximum absolute value of AC coefficient
0	0	0	Visible	Less than or equal to 255
1	0	1	Lower than class 0	
2	1	0	Lower than class 1	
3	1	1	Lower than class 2	
		-	Greater than 255	

Table 22 - An example of the classification for reference

	Maximum absolute value of AC coefficient			
	0 to 11	12 to 23	24 to 35	>35
Y	0	1	2	3
C_{R}	1	2	3	3
C_{B}	2	3	3	3

5.3.5 Area number

An area number is used for selection of the quantization step. AC coefficients within a DCT block shall be classified into four areas with area number as shown in figure 28.

5.3.6 Quantization step

The quantization step shall be decided by the class number, area number, and quantization number (QNO) as specified in table 23. QNO is selected in order to limit the amount of data in one video segment to five compressed macro blocks.

5.4 Variable length coding (VLC)

Variable length coding is an operation for transforming from quantized AC coefficients to variable length codes. One or more successive AC coefficients within a DCT block are coded into one variable length code according to the order as shown in figure 27. Run length and amplitude are defined as follows:

Run length: The number of successive AC coefficients quantized to 0 (run $=0, \ldots, 61$)
Amplitude: Absolute value just after successive AC coefficients quantized to 0 ($a m p=0, \ldots, 255$)
(run amp): The pair of run length and amplitude

Table 24 shows the length of code words corresponding to (run, amp). In the table, sign bit is not included in the length of code words. When the amplitude is not zero, the code length shall be plus 1 because sign bit is needed. For empty columns, the length of code words of the (run, amp) equals that of the (run - 1,0) plus that of the ($0, a m p$).

Variable length code shall be as shown in table 25. The leftmost bit of code words is MSB and the rightmost bit of code words is LSB in table 25. The MSB of a subsequent code word is next to the LSB of the code word just before. Sign bit " s " shall be as follows:

When the quantized AC coefficient is greater than zero, $s=0$;
When the quantized AC coefficient is less than zero, $s=1$.
When the values of all of the remaining quantized coefficients are zero within a DCT block, the coding process is ended by adding EOB (end of block) code word of 0110b to just after the last code word.

2-4-8-DCT
horizontal

	0	1	2	3	4	5	6	7
0	DC	0	1	1	1	2	2	3
1	0	1	1	2	2	2	3	3
2	1	1	2	2	2	3	3	3
3	1	2	2	2	3	3	3	3
4	0	0	1	1	2	2	2	3
5	0	1	1	2	2	2	3	3
6	1	1	2	2	2	3	3	3
7	1	2	2	3	3	3	3	3

Figure 28 - Area numbers
Table 23 - Quantization step

	Class number				Area number			
Quantization number (QNO)	0	1	2	3	0	1	2	3
	15				1	1	1	1
	14				1	1	1	1
	13				1	1	1	1
	12	15			1	1	1	1
	11	14			1	1	1	1
	10	13		15	1	1	1	1
	9	12	15	14	1	1	1	1
	8	11	14	13	1	1	1	2
	7	10	13	12	1	1	2	2
	6	9	12	11	1	1	2	2
	5	8	11	10	1	2	2	4
	4	7	10	9	1	2	2	4
	3	6	9	8	2	2	4	4
	2	5	8	7	2	2	4	4
	1	4	7	6	2	4	4	8
	0	3	6	5	2	4	4	8
		2	5	4	4	4	8	8
		1	4	3	4	4	8	8
		0	3	2	4	8	8	16
			2	1	4	8	8	16
			1	0	8	8	16	16
			0		8	8	16	16

Table 24 - Length of codewords

													Amp	ude												
Run length	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	-	255
0	11	2	3	4	4	5	5	6	6	7	7	7	8	8	8	8	8	8	9	9	9	9	9	15	-	15
1	11	4	5	7	7	8	8	8	9	10	10	10	11	11	11	12	12	12								
2	12	5	7	8	9	9	10	12	12	12	12	12														
3	12	6	8	9	10	10	11	12																		
4	12	6	8	9	11	12																				
5	12	7	9	10																						
6	13	7	9	11																						
7	13	8	12	12																						
8	13	8	12	12																						
9	13	8	12																							
10	13	8	12																							
11	13	9																								
12	13	9																								
13	13	9																								
14	13	9																								
15	13																									
1																										
61	13																									
NOTES 1 Sign bit is not included. 2 The length of $E O B=4$.																										

Table 25 - Codewords of variable-length coding

NOTES
1 (R, 0): 1111110 r5 r4 r3 r2 r1 r0, where $32 \mathrm{r} 5+16 \mathrm{r} 4+8 \mathrm{r} 3+4 \mathrm{r} 2+2 \mathrm{r} 1+\mathrm{r0}=\mathrm{R}$.
$2(0, A): 111111 \mathrm{a} 7 \mathrm{a} 6 \mathrm{a} 5 \mathrm{a} 4 \mathrm{a} 3 \mathrm{a} 2 \mathrm{a} 1 \mathrm{a} 0 \mathrm{~s}$, where $128 \mathrm{a} 7+64 \mathrm{a} 6+32 \mathrm{a} 5+16 \mathrm{a} 4+8 \mathrm{a} 3+4 \mathrm{a} 2+2 \mathrm{a} 1+\mathrm{a} 0=\mathrm{A}$.
3 S is sign bit. EOB means end of block.

5.5 Arrangement of a compressed macro block

A compressed video segment consists of five compressed macro blocks. Each compressed macro block has 77 bytes of data. The arrangement of the compressed macro block shall be as shown in figure 29 for 4:2:2 compression and in figure 30 for 4:1:1 compression. Each compressed macro block of 4:2:2 compression includes a two-byte data area (X0, X1). The data arrangement is shown in figure 29. The data format of the reserved area is not defined except 100000000000 .

Figure 29 - Arrangement of a compressed macro block for 4:2:2 compression

STA: Error status
QNO: Quantization number
DC: DC component
AC: AC component
EOB: End of block (0110)
mo: DCT mode
co, c1: Class number

Figure 30 - Arrangement of a compressed macro block for 4:1:1 compression

STA (status of the compressed macro block)
STA expresses the error and concealment of the compressed macro block and consists of four bits: s3, s2, s1, s0. Table 26 shows the definitions of STA.

QNO (quantization number)
QNO is the quantization number applied to the macro block. Code words of the QNO shall be as shown in table 27.

Table 26 - Definition of STA

STA				Information of the compressed macro block		
s3	s2	s1	s0	Error	Error Concealment	Continuity
0	0	0	0	No error	Not applied	-
0	0	1	0		Type A	Type a
0	1	0	0		Type B	
0	1	1	0		Type C	
0	1	1	1	Error exists	-	-
1	0	1	0	No error	Type A	Type b
1	1	0	0		Type B	
1	1	1	0		Type C	
1	1	1	1	Error exists	-	-
Others				Reserved		
where						
Type A: Replaced with a compressed macro block of the same compressed macro block number in the immediate previous frame.						
Type B: Replaced with a compressed macro block of the same compressed macro block number in the next immediate frame.						
Type C: This compressed macro block is concealed, but the concealment method is not specified.						
Type a: The continuity of the data processing sequence with other compressed macro blocks whose $\mathrm{s} 0=0$ and $\mathrm{s} 3=0$ in the same video segment is guaranteed.						
Type b: The continuity of the data processing sequence with other compressed macro blocks is not guaranteed.						
NOTES						
1 For STA $=0111 \mathrm{~b}$, the error code is inserted in the compressed macro block. This is an option.						

Table 27 - Codewords of the QNO

q3	q2	q1	q0	QNO
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15

DC -
DCI (where I is the DCT block order in the macro block, $I=0, \ldots, 3$ for 4:2:2 compression, $I=0, \ldots, 5$ for 4:1:1 compression) consists of a DC coefficient, the DCT mode, and the class number of the DCT block.

AC -
$A C$ is a generic term for variable length coded $A C$ coefficients within the video segment $V i$, k. For 4:2:2 compression, the areas of $Y 0, Y 1, C_{R}$, and C_{B} are defined as compressed-data areas and each of $Y 0$ and $Y 1$ consists of 112 bits and each C_{R} and C_{B} consists of 80 bits as shown in figure 29. For 4:1:1 compression, the areas of $Y 0, Y 1, Y 2, Y 3, C_{R}$, and C_{B} are defined as compressed-data areas and each of $Y 0, Y 1$, $Y 2$, and $Y 3$ consists of 112 bits and each C_{R} and C_{B} consists of 80 bits as shown in figure 30 . DCI and variable length code for AC coefficients in the DCT block whose DCT block number is i, j, k, I are assigned from the beginning of the compressed-data area in the compressed macro block CM i, j, k. In figures 29 and 30, the variable length code word is located starting from the MSB which is shown in the upper left side, and the LSB shown in the lower right side. Therefore, $A C$ data are distributed from the upper left corner to the lower right corner.

5.6 Arrangement of a video segment

In this clause, the distribution method of quantized AC coefficients is described. Figures 31 and 32 show the arrangement of a video segment CV i, k after bit-rate reduction. Each row contains a compressed macro block. Columns F i, j, k, I express the compressed data area for DCT blocks whose DCT block numbers are i, j, k, l. Symbol E i, j, k, I expresses an additional AC area for recording remaining data from the fixed AC area.

Figure 31 - Arrangement of a video segment after the bit-rate reduction for 4:2:2 compression

Compressed macro block number CM a, 2, k	Byte position number						
	S T A a Q N O a	Fa, 2, k, 0	F a, 2, k, 1	Fa, 2, k, 2	F a, 2, k, 3	F a, 2, k, 4	F a, 2, k, 5
CM b, 1, k	S A A B Q N O O B	F b, 1, k, 0	F b, 1, k, 1	F b, 1, k, 2	F b, 1, k, 3	F b, 1, k, 4	F b, 1, k, 5
CM c, 3, k	1 S A c Q	Fc, 3, k, 0	F c, 3, k, 1	F c, 3, k, 2	F c, 3, k, 3	F c, 3, k, 4	F c, 3, k, 5
CM d, 0, k	S T A d Q N N d	Fd, 0, k, 0	F d, 0, k, 1	F d, 0, k, 2	F d, 0, k, 3	F d, 0, k, 4	F d, 0, k, 5
CM e, 4, k	S T A e Q N O O	Fe, 4, k, 0	Fe, 4, k, 1	Fe, 4, k, 2	Fe, 4, k, 3	Fe, 4, k, 4	Fe, 4, k, 5
		$=\frac{\mathrm{YO}}{14 \text { bytes }}$	$\frac{\text { Y1 }}{14 \text { bytes }}$	$<\frac{\mathrm{Y} 2}{14 \text { bytes }}$	$<\frac{\mathrm{Y} 3}{14 \text { bytes }}$	$\frac{\text { CR }}{10 \text { bytes }}$	$\underset{10 \text { bytes }}{C B}$

$$
\text { where } \begin{array}{lc}
a=(i+2) \bmod n & i: \text { the vertical order of the super block } \\
b=(i+6) \bmod n & n=0, \ldots, n-1 . \\
c=(i+8) \bmod n & n: \text { the number of vertical super blocks in a video frame } \\
d=(i+0) \bmod n & n=10 \text { for the } 525 / 60 \text { system } \\
e=(i+4) \bmod n & \\
& \\
& \text { k: the macro block order in the super block } \\
k=0, \ldots, 26
\end{array}
$$

Figure 32 - Arrangement of a video segment after the bit-rate reduction for 4:1:1 compression

Bit sequence, defined as $\mathrm{Bi}, \mathrm{j}, \mathrm{k}, \mathrm{l}$, shall consist of the following concatenated data: DC coefficient, DCT mode information, class number, and AC coefficient code words for DCT blocks numbered i, j, k, l. Code words for AC coefficients of Bi, j, k, I shall be concatenated according to the order as shown in figure 27 and the last code word shall be EOB. The MSB of the subsequent code word shall be next to the LSB of the code word just before.

The arrangement algorithm of a video segment shall be composed of three passes:
Pass 1: The distribution of $\mathrm{B} \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{I}$ to the compressed-data area;
Pass 2: The distribution of the overflow $B \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{I}$ which are the remainder after the pass 1 operation in the same compressed macro block;

Pass 3: The distribution of the overflow $B \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{I}$ which are the remainder after the pass 2 operation in the same video segment.

Arrangement algorithm of a video segment

```
4:2:2 compression
    if (525/60 system) \(n=20\) else \(n=24\);
    for \((i=0 ; i<n ; i++)\{\)
        \(a=(i+4) \bmod n ;\)
        \(b=(i+12) \bmod n ;\)
        \(c=(i+16) \bmod n ;\)
        \(d=(i+0) \bmod n ;\)
        \(e=(i+8) \bmod n ;\)
        for ( \(k=0 ; k<27 ; k++\) )
            \(\mathrm{q}=2\);
            \(p=a ;\)
            \(V R=0\)
            /* VR is the bit sequence for the data which are not distributed to video segment \(\mathrm{CV} \mathrm{i}, \mathrm{k}\) by pass 2. */
/* pass 1 */
    for ( \(j=0 ; j<5 ; j++\) ) \{
            \(\mathrm{MRq}=0\);
            /* MRq is the bit sequence for the data which are not distributed to macro block \(\mathrm{M} \mathrm{i}, \mathrm{q}, \mathrm{k}\) by pass 1 . */
            for ( \(1=0,1<4\); \(1++\) ) \{
                remain \(=\) distribute ( \(\mathrm{B} p, \mathrm{q}, \mathrm{k}, \mathrm{I}, \mathrm{F} \mathrm{p}, \mathrm{q}, \mathrm{k}, \mathrm{l}\) );
                    \(M R q=\) connect (MRq, remain);
            \}
                    if \((q==2)\{q=1 ; p=b ;\}\)
            else if \((q==1)\{q=3 ; p=c ;\}\)
            else if \((q==3)\{q=0 ; p=d ;\}\)
            else if \((q==0)\{q=4 ; p=e ;\}\)
            else if \((q==4)\{q=2 ; p=a ;\}\)
        \}
/* pass 2 */
    for ( \(\mathrm{j}=0 ; \mathrm{j}<5\); j++) \{
            for (l = 0; I < 4; I ++) \{
                \(\mathrm{MRq}=\) distribute \((\mathrm{MRq}, \mathrm{F} \mathrm{p}, \mathrm{q}, \mathrm{k}, \mathrm{I})\);
                if \(((\mid==0)|\mid(l==1))\)
                    \(\mathrm{MRq}=\operatorname{distribute}(\mathrm{MRq}, \mathrm{E} \mathrm{p}, \mathrm{q}, \mathrm{k}, \mathrm{I})\);
            \}
            \(\mathrm{VR}=\) connect ( \(\mathrm{VR}, \mathrm{MRq}\) );
                        if \((q==2)\{q=1 ; p=b ;\}\)
            else if \((q==1)\{q=3 ; p=c ;\}\)
            else if \((q==3)\{q=0 ; p=d ;\}\)
            else if \((q==0)\{q=4 ; p=e ;\}\)
            else if \((q==4)\{q=2 ; p=a ;\}\)
            \}
/* pass 3 */
    for (j = 0; j < 5; j++) \{
            for (I = 0; I < 4; I ++) \{
                \(\mathrm{VR}=\) distribute \((\mathrm{VR}, \mathrm{F} p, \mathrm{q}, \mathrm{k}, \mathrm{I})\);
                    if \(((I==0)|\mid(l==1))\)
                    \(\mathrm{VR}=\) distribute (VR, E p, q, k, I);
            \}
                if \((q==2)\{q=1 ; p=b ;\}\)
            else if \((q==1)\{q=3 ; p=c ;\}\)
            else if \((q==3)\{q=0 ; p=d ;\}\)
            else if \((q==0)\{q=4 ; p=e ;\}\)
            else if \((q==4)\{q=2 ; p=a ;\}\)
            \}
        \}
    \}
```

```
4:1:1 compression
    if (525/60 system) n = 10 else n=12;
    for (i=0; i < n ; i++){
        a = (i + 2) mod n;
        b = (i + 6) mod n;
        c = (i + 8) mod n;
        d = (i + 0) mod n;
        e=(i+4) mod n;
        for (k = 0; k < 27; k++){
        q = 2;
        p = a;
        VR = 0
        /* VR is the bit sequence for the data which are not distributed to video segment CV i,k by pass 2 */
/* pass 1 */
    for (j = 0; j < 5; j++) {
            MRq = 0;
            /* MRq is the bit sequence for the data which are not distributed to macro block M i, q, k by pass 1. */
            for (l = 0, l < 6; I ++) {
                remain = distribute (B p, q, k, I, F p, q, k, I);
            MRq = connect (MRq, remain);
        }
                    if (q== 2) {q=1;p=b;}
            else if (q== 1) {q=3;p=c;}
            else if (q== 3) {q=0;p=d;}
            else if (q== 0) {q=4;p=e;}
            else if (q== 4) {q=2; p=a;}
    }
/* pass 2 */
    for (j = 0; j < 5; j++) {
        for (l = 0; l < 6; l ++) {
            MRq = distribute (MRq, F p, q, k, I);
        }
        VR = connect (VR,MRq);
            if (q== 2) {q=1;p=b;}
        else if (q== 1) {q=3;p=c;}
        else if (q== 3) {q=0;p=d;}
        else if (q== 0) {q=4;p=e;}
        else if (q== 4) {q=2;p=a;}
    }
/* pass 3 */
    for (j = 0; j < 5; j++){
            for (I = 0; I < 6; I ++) {
                VR = distribute (VR, F p, q, k, I);
            }
                if (q== 2) {q=1;p=b;}
            else if (q== 1) {q=3;p=c;}
            else if (q== 3) {q=0;p=d;}
            else if (q== 0) {q=4;p=e;}
            else if (q== 4) {q=2;p=a;}
        }
        }
    }
where
    distribute (data 0, area 0) {
            /* Distribute data 0 from MSB into empty area of area 0. */
```

```
        /* The area 0 is filled starting from the MSB. */
    remain = (remaining_data);
        /* Remaining_data are the data which are not distributed. */
        return (remain);
}
connect (data 1, data 2) {
    /* Connect the MSB of data 2 with the LSB of data 1. */
    data 3 = (connecting_data)
    /* Connecting_data are the data which are connected. */
    /* data 2 with data 1. */
    return (data 3);
}
```

The remaining data which cannot be distributed within the unused space of the macro block will be ignored. Therefore, when error concealment is performed for a compressed macro block, some distributed data by pass 3 may not be reproduced.

Video error code processing
If errors are detected in a compressed macro block which is reproduced and processed with error correction, the compressed-data area containing these errors should be replaced with the video error code. This process replaces the first two bytes of data of the compressed-data area with the code as follows:

MSB LSB
1000000000000110b
The first 9 bits are the DC error code, the next 3 bits are the information of the DCT mode and class number, and the last 4 bits are the EOB as shown in figure 33.

When the compressed macro blocks, after error code processing, are input to the decoder which does not operate with video error code, all data in this compressed macro block should be processed as invalid.

Figure 33 - Video error code

Annex A (informative)
Differences between IEC 61834 and SMPTE 314M
The differences between IEC 61834 and SMPTE 314M are shown in table A.1.
Table A. 1 - Abstract of differences between IEC 61834 and SMPTE 314M

		$\begin{gathered} \text { DV } \\ \text { IEC } 61834 \end{gathered}$	$\begin{gathered} \text { DV-BASED } \\ \text { SMPTE 314M } \end{gathered}$		
		$25 \mathrm{Mb} / \mathrm{s}$ structure	$50 \mathrm{Mb} / \mathrm{s}$ structure		
Data structure			IEC 61834	Same as IEC 61834	See figure 2
Header	$\begin{gathered} \hline \text { Bit name } \\ \text { APT } \\ \text { AP1 } \\ \text { AP2 } \\ \text { AP3 } \\ \hline \end{gathered}$	$\begin{aligned} & 000 \\ & 000 \\ & 000 \\ & 000 \end{aligned}$	$\begin{aligned} & 001 \\ & 001 \\ & 001 \\ & 001 \\ & \hline \end{aligned}$		
ID	FSC	FSC is not defined (set to 0)	See 4.3.1		
Video	Sampling structure	$\begin{aligned} & 525: 4: 1: 1 \\ & 625: 4: 2: 0 \end{aligned}$	$\begin{array}{ll} \text { 525: } 4: 1: 1 \\ 625: & 4: 1: 1 \end{array}$	$\begin{aligned} & \text { 525: } 4: 2: 2 \\ & 625: 4: 2: 2 \end{aligned}$	
VAUX	$\begin{gathered} \text { VS } \\ \text { VSC } \\ \text { Other } \\ \hline \end{gathered}$	IEC 61834 IEC 61834 IEC 61834	See See Res	$\begin{aligned} & 2.1 \\ & 2 \\ & d \\ & \hline \end{aligned}$	
Audio	Sampling Locked mode	48 kHz (16 bits, 2ch) 44.1 kHz (16 bits, 2ch) 32 kHz (16 bits, 2ch) 32 kHz (12 bits, 4ch) Locked / unlocked	48 kHz (16 bits, 2ch) Locked	48 kHz (16 bits, 4ch) Locked	
AAUX	$\begin{aligned} & \text { AS } \\ & \text { ASC } \\ & \text { Other } \end{aligned}$	IEC 61834 IEC 61834 IEC 61834	See See Re	$\begin{aligned} & 3.1 \\ & 3.2 \end{aligned}$	
Subcode	$\begin{gathered} \text { SSYB ID } \\ \text { TC } \\ \text { BG } \\ \text { Other } \\ \hline \end{gathered}$	IEC 61834 IEC 61834 IEC 61834 IEC 61834		$\begin{aligned} & \hline .1 \\ & 2.1 \\ & 61834 \end{aligned}$	

Annex B (informative)
Bibliography
ANSI/IEEE 1394-1995, High Performance Serial Bus
ANSI/SMPTE 125M-1995, Television — Component Video Signal 4:2:2 — Bit-Parallel Digital Interface
SMPTE 306M-2002, Television Digital Recording - 6.35-mm Type D-7 Component Format — Video Compression at 25 Mb / s and $50 \mathrm{Mb} / \mathrm{s}$ - $525 / 60$ and 625/50

IEC 60958 (1989-02), Digital Audio Interface

